Operational Guide for

HBM-1/HTG-1

Contents

contents

0

- Operation
- IOL Calculation
- •Field test results
- Myopia management
- User Setup
- •Q&A

How to activate HBM-1

0

(3)

How to activate HBM-1

NU N	В НВМ-1	2	PATI	ENT LI	ST									
Now N								Q 🖻						
CON														
							Notic	e						
N.CO.						ke						4-12		
NULL I								Check calibrat	Check calibration status before 4					
TIMN'S								measurement.						
12.00						те		Cancel	ок					
SURVE														
LUN														
	0													~

Check calibration status regularly

0

Place a model eye on the chinrest

Check the message "Data validated"

Set up the focus like the picture

Patient Info

- 2. Auto tracking & shoot
- 3. Separate measurement

Cancel

PRINT

Patient Page

(6)

) НВМ-1		Searching		Today List		New	De	elete		Transfer (HIIS-1)	
				Q 🖾		<u>ନ</u>	+	<u>آ</u>	,	V	¥≡
	Ø ID	÷	Name	÷	Gender	≑ Age	2	¢	Update	÷	^
	00014		김재민		Male	198	3-10-13		2023-10-13		
8	Current Selection	1	임인호		Male	198	3-10-13		2023-10-13		
	00012		김정환		Male	198	3-10-13		2023-10-13		
0	Disabled		이화준		Male	198	3-10-13		2023-10-13		
	00010		송인석		Male	198	3-10-13		2023-10-13		
	00032		Sook Choi		Female	198	1984-09-23		2023-10-13		
	O 00002 User		Patient_2		Male	198	3-08-17		2023-10-12		
۞	Option 01		Patient_1_my	opia	Male	200	6-08-17		2023-10-05		
Ċ	Off 07		Patient DCM_	IOL	Male	198	3-08-17		2023-09-26		\sim

0

New Patient

New Patient

F	Patient ID 00032		First Name				Last Name			7	
			Sook			Choi					
¢	Birth YYYY-MM-DD 1984-09-23		Gender Female	~	Physician 1	Each own le	Physician can hav ens & formulas	ve its	~		
							Cancel	ОК			
	00005	Patien	t_ Keratoconus2		Male		1983-08-17	2023-08-17			
	00004	Patien	t_ Keratoconus1		Male		1983-08-17	2023-08-17			

0

Operation

(7)

Patient Detail Page

Q

मा

ලා

 (\mathbf{j})

Operation

Ю НВМ-1	우 PA 1	TIENT LIST		Edit Patient	Transfer (HIIS-1)							
		Patient ID	00011			Gender	Male		Physician		Ø	∇
		Name	이화준			Age	1983-10-13	10-13			Ф муоріа	回
		DATE / TIME	AL	ССТ	ACD	LT	K1	K2	Axis	Lens	Start Myopia	Delete Patient
8	OD	2023-10-13	24.82	0.594	3.10	4.76	7.99	7.64	179	Phakic	management	
R	Press thi	14:49:05 is button to sta	24.18 rt a	0.594	3.06	4.75	7.88	7.60	0	Phakic	Natural	
	m	easurement										

0

8)

Measurement Page

Measurement

Measurement(Bad Case Ker Tear 1)

Measurement(Bad Case Ker Tear 2)

Operation

13)

Measurement(Bad Case Ker Tear 3)

Measurement(Bad Case Ker Eyebrow)

Operation

15)

О НВМ-1	네 RESULT	Ye J 40178	2023-02-28 15:49:24
	OD OS	MAP PROFILE SimK	~
	SUM	54.00 53.00 52.00 51.00	41.95D(8.04mm) @2°
8	KER	50.00 49.00 48.00	
	ZED	47.00 46.00 45.00	43.44D(7.77mm) @92°
	ZER	44.00 43.00 42.00 CYL	
	AL		-1.49D
Q.	ANT	38.00 37.00 36.00 K Max(R Min)	
		35.00 34.00 33.00	44.66D(7.56mm) @93°
Щ	PUPIL	32.00 31.00	
SETUP			42.68D(7.91mm)
Syste	em	Ecc(8mm)	
Devi	Auto Tracking	On Off Auto Retry PING ! We recommend manual Ker	-0.90
Patie	Auto Shoot	On Off measurement by operator !	
Meas	Auto Shoot Det	ail KER AL ANT	

Result : Summary

Operation

О НВМ-1	<u>சி</u> RESULT				8	kevin 00008		2024-04-12 13:59:18
	OD OS	OD Phakic			os	Phakic		
	SUM	AL 24.97	24.97		AL (mm)	Total average 24.82 0.032 STD	24.82	
8	Patient list	Keratometry Detail	0.492		сст	Standard de	viation	
	ZER	Zernike Detail			((101))	0.010 STD		
	AL	Axial Length Detail	3.59		ACD	3.63 0.020 STD	3.63	
Q	IOL Lens	CCT,ACD,LT Detail	3.70		LT (mm)	3.75	3.75	
Щ	PUPIL							
	WTW	K1 44.27 White to White		LT (mm)	(!) 3.6 0.050	3.7 STD	3 3.65	3.65
	CONT.FIT	Contact lens fitting		ALW	Varning –	Warning Mar Data was obtai	k (!) ned by DCI	M Mode
තු	<pre>ca</pre>	AXIS 142 Send out CYL = -0.57D		ACD Wa LT War	arning – Pa rning – Pat	atient Lens is A ient Lens is Ay	Aphakic / Ps phakic / Pse	eudoPhakic eudoPhakic

0

Result : Keratometry

Result : Topography Zoom Image

appendix

Display Type	?	67.50
Full Im	age 🔨	66.00
		64.50
Full Image	2	63.00
4 Images		61.50
Comparis	on	60.00
Man Tuno		58.50
мар туре		57.00
Axia	l ~	55.50
		54.00
Sca	e	52.50
		51.00
Ker Data		49.50
Df	8 60mm	48.00
K1	38 82D	46.50
Axis(K1)	63°	45.00
Rs	8.64mm	43.50
K2	39.07D	42.00
Axis(K2)	153°	40.50
Cyl	-0.25D	39.00
R Min	8.62mm	27 50
K Max	39.17D	37.50
R Avg	8.67mm	36.00
K Avg	38.94D	34.50
Ecc(8mm)	-0.90(e)	33.00
		31.50
		30.00

D

Result : Topography Comparison

appendix

Result

0

Operation

2024-02-14

О ІВМ-1	네 RESU	LT
	SimK	~
	K1(Rf)	
		38.82D(8.69mm) @6°
0	K2(Rs)	
×		39.45D(8.55mm) @96°
	CYL	
		-0.63D
0	K Max(R Min)	
4		39.28D(8.59mm) @127°
Ih	K Avg	
		39.13D(8.62mm)
	Ecc(8mm)	
	е	-0.94
		E

			000	032	15:45:21
ian		~		Keratoconus	~
one				KPI (Keratoconus Prediction In	dex)
	8.78mm @ 12° 8.60mm @ 102°				0.30
	8.69mm -0.82D ax 12°			SAI (Surface Asymmetry Index)	
					1.06
one				DSI (Differential Sector Index)	
	8.63mm @ 4° 8.50 @ 94°		L		3.47
	8.57mm -0.58D ax 4°	If the It sum	ne K spici	KPI is over 0.23, ious Keratoconus (r Index)	
one		T			3.47
	8.38mm @ 178°			CSI (Central/Surrounding Index	<)
	8.13mm @ 88° 8.26mm				1.14
	-1.25D ax 178°			IAI (Irregular Astigniatism Inde	x)
2mm /	/ 4mm / 6mm				0.23
3mm /	/ 5mm / 7mm				
Diopte	er / Millimeter	€		Central steepening Kerate	oconus
C	hangeable			Keratoconus Suspicious	
				Non-Keratoconus	

0

.

Meridian

2mm Zone

K1

K2 AVG

Cyl

K1

K2 AVG Cyl

K1 K2

AVG

Cyl

4mm Zone

6mm Zone

1)

Result: Zernike

Result: Zernike

	Axial X6 Anter Cents	Langth(AL) 7 ior Chamber Depth(A) rai Corneal Thickness Thickness(LT)				
Re	SUIT Kerren Kerren Zeinn Vunit	tometry graphy toconius ike Coefficients ometry a to white		3		Operation
О НВМ-1	.ி RESULT				오 송인석 00010	2023-10-13 14:46:27
	OD OS				비는 DCM No. AL	
	SUM				Dense Cataract Mode 26.89 Analyze data with DCM	
Q	KER				algorithm 26.89	
	SETUP				3 26.83	5
	System	Language	E	nglish	Caution ! If Setup – Save Mode : Light Mode	
0	Patient	Device Name			DCM mode not working (Light Mode : Don't Save Raw data))
Л	Measure Connectivity	Sleep Time	Off	5 Min	6 26.89 Caution !	
	Report	Touch Keyboard	On	Off	Severe cataract may not come out on DCM Mode, which requires the use of A-Scan)
	IOL	Login Page	On	Off	?6.87 mm	
	Information	Save Mode	Light	Raw	0.022 STD #1 #2	2. #3
©	- CP					

(26)

Result : Pupilometry

О НВМ-1	<u>ரி</u> RESULT		8	Sook Choi 00032	2023-10-13 08:28:51
	OD OS	PUPIL GRAPH		VALUES	**
	SUM	Dynamic		Average Diameter	2 17mm
8		Dynamic : Photopic + Mesopic Photopic : Daylight Mesopic : Dark night	64/106	Max Values Average Std	5.13mm 4.08mm 0.789mm
			No / Total Frame	Diameter	
				Diameter	4.53mm
Q.					
Л	PLIP		6 6 70	Pupil Center Diff	
	WTW			X Y	-0.01mm -0.01mm
		N D P	<u></u>	Time	
				Time	4.90
¢	ā	R.Center Pupil Grid	Rulers		

Result : Pupilometry

Result : Pupilometry

Operation

Sook Choi 2023-10-13 0 . मा RESULT 00032 08:28:51 HBM-1 GRAPH DECENTRATION PUPIL OS OD Average Diameter SUM Min Values 2.17mm Max Values 5.13mm Average 4.08mm 2 121 Average Pupil Decentration -0.24mm -0.17mm 121 Std Dev 0.12mm Q Щ PUP Latency Decentration ලා ÷

Result: Contact Lens Fitting

Result: Contact Lens Fitting Operation Dationt 2 0 Lens Parameters HBM-1

34)

°°°3-07-19

8:12

Result: Contact Lens Fitting

Operation

(35)

Result: Print Option

		Ante X6 Cer Len	al Length(AL Z erior Chamt tral Corneal is Thickness) Per Depth(Act Thickness(C (LT)			-1	TE					
0	L:			ası	urer	nen	t D	ata	Edi	t		IOL (Calculation
В НВМ-1	Q,	IOL CAL	CULAT	ION					(2) P	atient_2 0002			2023-07-19 15:18:12
	OĽ	0 0	os ^I	OL Calcul	ation Po	ost Refraci	tive	Toric					5
	Mea	isurement	t Data Ec	lit									
	Statu	i s Meas	sured	Measure	ed								~
	Biom	etry		Manua	1		Kerato	ometry					~
	AL	24.26	mm	сст	0.547	mm	K1	8.15	mm	Index	1.3375	~	Ι 🔶
Q.	ACD	3.11	mm	WTW	12.28	mm	K2	7.94	mm	Unit	mm	~	
h	LT	3.61	mm	All	data is edita	ble in 'Mar	nual' status		o				0.72
								Reset		Cancel		Ж	(D) 36
				20.50	0.34	21.	00	0.33	20.50	0.43	20.0)0	0.51
				21.00	0.00		50	-0.02	21.00	0.09	20.5	0	0.16
Ô	0) E	\$	21.50 22.00	-0.34 -0.69	22. 22.	00 50	-0.37 -0.72	21.50 22.00	-0.24 -0.58	21.0 21.5	00 50	-0.20 -0.57

IOL : General IOL

IOL Calculation

9)

О НВМ-1	ିହ୍ୟ IOL	CALCULA			2 Myo 0000	pia Managem)1	ent Sample	2024-02-13 10:05:57		
	OD	OS	IOL Calculation	Post	Refractive	Toric	Ba	arrett		Reset
			Surgeon		Target				_	
	Measurem	nent (!)	2		-1.0	Input ta after	rget diopter surgery			
R	AL	25.91	AMO Monu	facturor	АМО	~	AMO	~	AMO	~
	ССТ	0.447	Manu	lacturer						
	ACD	3.54	Tecnis 1 ZCB00	Lens N	Model	~	CeeOn 911A	~	ReZoom NXC	i1 🗸
	LT	3.70	Holladay	^	Barrett Univ	ersal II 🗸 🗸	HofferQ	~	SRK2	~
Q.	K1	38.73	SRK2 Form	nula						
	K2	39.16	SRK/T		LF = 1.936	21.04	pACD = 5.420	21.08	A = 118.500	19.43
मी	Cyl	-0.44	HofferQ		Selected L	ens lens				
	Axis	170	Haigis			/ Ideal	IOL(D)	REF(D)	IOL(D)	REF(D)
	WTW	11.83	Holladay			opter	20.00	-0.24	18.50	-0.25
		11105	Barrett Universal	II Lic	ense Only	-0.60	The close	est IOL diop	ter to the input	target
			21.00 -0).96	21.00	-0.97	21.00	-0.94	19.50	-1.05
~			21.50 -1	.32	21.50	-1.35	21.50	-1.30	20.00	-1.45
2Q3	Ø	-Ci-	22.00 -1	.69	22.00	-1.73	22.00	-1.66	20.50	-1.85

IOL: IOL Post Ref

IOL Calculation

IOL: IOL Post Ref

IOL Calculation

2024-02-13

41)

О нвм-1	ିହି IOL (CALCULA	ATION				2 Myc 000	opia Managem 01	ent Sample	2024-02-13 10:05:57
	OD	OS	IOL Calculation	Post	Refractive	Toric	В	arrett		Reset
	Measurem	ent (!)	Surgeon 2		Target -1.0	Input ta after	rget diopter surgery			
8	AL CCT	25.91 0.447	AMO Man	ufacturer	АМО	~	АМО	~	АМО	~
	ACD	3.54	ReZoom NXG1	Lens M	Iodel n 911A	~	808C	~	808C	~
	LT	3.70	Camellin-Caloss	i 🗸	Camellin-Cal	ossi 🗸	Shammas N	o Hist 🗸	Camellin-Cal	ossi 🗸
Q	К1	38.73	Fo:	rmula	A - 118 300	22.30	A - 118 000	22.10	A - 118 000	22.04
л	K2	39.16	A - 118.400	22.31	A - 118.300	22.35	A - 118.000	22.10	A - 118.000	22.04
Щ	Cyl	-0.44	IOL(D) F	REF(D)	Selected L constants	ens lens / Ideal	IOL(D)	REF(D)	IOL(D)	REF(D)
	AXIS	170	21.50	-0.28	IOL Di	opter	21.00	-0.13	21.00	-0.26
	WTW	11.83	22.00	-0.64	22.00	-0.72	The o	closest IOL d	iopter to input	target
			22.50	-0.99	22.50	-1.08	22.00	-0.92	22.00	-0.97
â			23.00	-1.34	23.00	-1.43	22.50	-1.32	22.50	-1.34
ζΟ,	Ø	Ġ	23.50	-1.70	23.50	-1.79	23.00	-1.73	23.00	-1.70

0

Myopia Management Sample

Result: IOL Toric

IOL Calculation

) НВМ-1	ै। IOL	CALCULA	ATION					Myopia Managei 00001	ment Sample	2024-02-13 10:05:57
	OD	OS	IOL Calculation	Post	Refractive	Toric		Barrett	\rightarrow	C
	Measurem	nent (!)	Surgeon 1		Target	SIA 1	IL 35			
Q	AL	25.91		Map	ufacturar					
\bigcirc	ССТ	0.447	HumanOptics	Iviali		s v	HumanO	ptics 🗸	HumanOptic	s 🗸
	ACD	3.54	TORICA -aAY Star	Lens	model A -aAY	Stan 🗸	TORICA -	aAY Stan 🗸	TORICA -aAY	′ Stan 🗸
	LT	3.70	Barrett Univ. II T	pric 🔨	SRK/T	~	SRK/T	~	SRK/T	~
Q.	K1	38.73	SRK/T	TO						
	K2	39.16	HofferQ		A = 118.700	20.04	A = 118.7	00 20.04	A = 118.700	20.04
मा	Cyl	-0.44	Haigis				const	ants / Ideal		
	Axis	170	Holladay		IOL(D)	KEF(D)	101	Diopter		KEF(D)
	WTW	11.83	20.00 -0).48	19.50	-0.22 -0.59	19.00 19.50	-0.22 -0.59	19.00 19.50	-0.22 -0.59
	Select	a lens	20.50 -().86	20.00	-0.97	20.00	-0.97	20.00	-0.97
			21.00 -1	.24	20.50	-1.35	20.50	-1.35	20.50	-1.35
	\mathcal{O}		21.50 -1	.63	21.00	-1.73	21.00	-1.73	21.00	-1.73

Result: IOL Toric (Select Target REF)

Calculation IOL

2024-02-13

10:05:57

Myopia Management Sample

.

00001

Ò. **IOL CALCULATION**

Result: IOL Toric (Select Target CYL)

IOL Calculation

2024-02-13

Myopia Management Sample

2

S IOL CALCULATION

IOL: IOL (Barrett)

IOL Calculation

О НВМ-1	ିହ IOL	CALCULA	ATION				8	Myopia Managen 00001	nent Sample	2024-02-13 10:05:57	
	OD	OS	IOL Calculati	on Post	Refractive	Toric		Barrett		C	
	Measuren	pent (1)	Surgeon	2	~	Barrett	t Formulas	Universal II	Universal II		
	weasuren	ient ()	Target					Universal II			
Q	AL	25.91	1					Universal II T	oric		
\bigcirc	ССТ	0.447						True K			
	ΑርΓ	3,54	AMO	~	AMO	~	AMO	True K Toric			
	IT	3 70	Tecnis 1 7CB	00	Tecnis 1 7CF	300 🗸	Tecnis 1	RX 7(BURL			
2		20.72							Formula		
	KT	38.73	15 - 2 041	10 //	1 5 - 2 0/1	10 11	15-204	Universal l	l ll – General I l Toric – Toric	OL NOL	
л	K2	39.16	LF - 2.041	10.44	LF - 2.041	10.44	LF - 2.04	True K	L – Post Ref IC		
Щ	Cyl	-0.44						True K – . Rx – Exchang	Post Ref Toric e IOL / Piggyb	IOL ack IOL	
	Axis	170					101(D)				
	WTW	11.83	17.50	1.64	17.50	1.64	17.50	1.64	17.50	1.64	
			18.00	1.30	18.00	1.30	18.00	1.30	18.00	1.30	
			18.50	0.95	18.50	0.95	18.50	0.95	18.50	0.95	
â			19.00	0.60	19.00	0.60	19.00	0.60	19.00	0.60	
τζος Γ	\oslash		19.50	0.25	19.50	0.25	19.50	0.25	19.50	0.25	

C

45)

10		Axial Langton X6 Anterior Cha Central Com Lens Thickne X8 Ker Toc Dar Puplismetry White to what X1		Tru	e ko		THE SALES			L Calculation
О НВМ-1	ିହ୍ୟ IOL	CALCULA	TION				2 Myc 000	opia Managen 01	nent Sample	2024-02-13 10:05:57
	OD	OS	IOL Calculation	n Post	Refractive	Toric	В	arrett		5
	Measurem	nent (!)	Surgeon 2		~	Barret	t Formulas	True K		✓
8	AL	25.91	larget	nput target after sur	diopter gery	Hist	ory opic Lasik	۹ ۱	-5.0	-1.0
	CCT ACD	0.447 3.54	AMO	~	AMO	My Hyp	opic Lasik Deropic Lasik	Ţ	RUE K : 38.5 / AMO	Corr3.73 D
	LT	3.70	CeeOn 911A	~	Tecnis 1 ZCBC)0 Rad	lial Keratotomy		Tecnis 1 Z	00 🗸
Q	K1 K2	38.73 39.16	LF = 1.726 TK LF = 1.880	21.60	LF = 2.041 TK LF = 2.200	22.	atoconus Post Surgery his TK LF = 2.200	story	LF = 2.04 TK LF = 2.2	00 22.15
म	Cyl Axis	-0.44 170	IOL(D)	REF(D)	IOL(D)	REF(D)	IC Input P	re Surgery /	Post Surgery	Ref diopter
	WTW	11.83	21.00	-0.55	21.50	-0.52	2 calculat TRUE	is 'Blank', C ed by measu K – Be used	Correction dic rement data in formula	opter is
෯		đ	21.50 22.00 22.50	-0.93 -1.31 -1.69	22.00 22.50 23.00	-0.89 -1.26 -1.64	2 It chang 22 23.00	ged dependir	ng on the surg 23.00	gery type

-6)

	Y	Axial Length X6 Anterior Cha Central Com		A		TE				
0	L: 10		arrett	Tru	eK/	<u>/ T</u> r	ue K	Tori	C) 10	L Calculation
	<	White to whi	te				0			
О НВМ-1	ି ।OL	CALCULA					8	Myopia Manage 00001	ement Sample	2024-02-13 10:05:57
	OD	OS	IOL Calculatio	on Post	Refractive	Tori	c	Barrett		C
			Surgeon 2		~	Barr	ett Formulas	True K		~
	Measurem	ient (!)	Target	Input target	diopter	Hi	story		Pre-Lasik Ref	Post-Lasik Ref
2	AL	25.91	-1	after sur	gery		lyopic Lasik	^	-5.0	-1.0
	ССТ	0.447					lyopic Lasik		TRUE K : 38.5 /	' Corr3.73 D
	ACD	3.54	AMO	~	AMO	н	yperopic Lasil	¢ (AMO	~
	LT	3.70	CeeOn 911A	~	Tecnis 1 ZCE	300 R	adial Keratoto	omy /	Tecnis 1 Z	своо 🗸
Q.	K1	38.73				К	eratoconus			
	K2	39.16	LF = 1.726 TK LF = 1.880	21.60	LF = 2.041 TK LF = 2.200	22.15	LF = 2.041 TK LF = 2.	l 22.15	LF = 2.041 TK LF = 2.2	22.15
मी	Cyl	-0.44			Selected Le	ens lens				
	Axis	170	IOL(D)	REF(D)	constants /	'Ideal	IOL(D)	REF(D)	IOL(D)	REF(D)
	WTW	11.83	20.50 21.00	-0.18 -0.55	21.50	-0.52	21.00 The c	-0.16 closest IOL die	21.00 opter to the inp	-0.16 out target
			21.50	-0.93	22.00	-0.89	22.00	-0.89	22.00	-0.89
			22.00	-1.31	22.50	-1.26	22.50	-1.26	22.50	-1.26
53	\mathcal{O}	-	22 50	-1 69	23.00	-1 64	23.00	-1 64	23.00	-1 64

17)

10	L: 10	Axial Length x6 Anterior Che Central Con Lens Thicks X8 Ker Dan Dan Dan Dan Dan Dan Dan Dan Dan Dan		Tru	BR/				in the second se	Calculation
О НВМ-1	ିହ IOL	CALCUL					Myc 0000	opia Managem 01	ent Sample	2024-02-13 10:05:57
	OD	OS	IOL Calculation	n Post	Refractive	Toric	B	arrett	\rightarrow	C
	Measurem	nent	Surgeon 2	614	~	Barrett F	ormulas 1	True K Toric	When selecter REF diopter button is avai	d IOL , next ilable
2	AL	25.91	Target -1	SIA 1	IL 45	Histor	y ic Lasik	~		St Lusin Ref
	CCT ACD	0.447 3.54	Input target die after surger	opter y (S	Input SIA urgically induced	I (Incis	nput IL ion on axis)	TF ~	RUE K : 38.31 / C HumanOptics	orr5.28 D
	LT	3.70	ARTIS T PL E	~	astigmatism) TORICA -aA Spe	cial 🗸	TORICA -aA S	ipecial 🗸	TORICA -aA S	pecial 🗸
Q	K1 K2	38.73 39.16	LF = 2.270 TK LF = 2.540	22.97	LF = 1.726 TK LF = 2.000	21.99	LF = 1.726 TK LF = 2.000	21.99	LF = 1.726 TK LF = 2.000	21.99
THE STREET	Cyl Axis	-0.44 170	IOL(D) 22.00	REF(D) -0.30	Selected Lens I constants / Ide IOL Diopter	ens eal	IOL(D) 21.00	REF(D) -0.27	IOL(D) 21.00	REF(D) -0.27
	WTW	11.83	22.50	-0.66	21.50	0.64	The clos	est IOL diop	oter of the input	target
Ś		¢,	23.00 23.50 24.00	-1.02 -1.39 -1.76	22.00 · · · · · · · · · · · · · · · · · ·	1.39	22.00 22.50 23.00	-1.01 -1.39 -1.77	22.00 22.50 23.00	-1.01 -1.39 -1.77

IOL : Comparison IOL Formula

O

*Wang, L., Shirayama, M., Ma, X.J., Kohnen, T., Koch, D.D. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm. J Cataract Refract Surg. 2011;37:2018–2027. Abulafia, A., Barrett, G.D., Rotenberg, M., Kleinmann, G., Levy, A., Reitblat, O., Koch, D.D., Wang, L., Assia, E.I., Intraocular lens power calculation for eyes with an axial length greater than 26.0 mm. Comparison of formulas and methods. J Cataract Refract Surg. 2015;41:548-556.

* Scientifically the W-K adjustment is controversial since it depends on the IOL design whether the adjustment is required or not.

** Care has to be taken in eyes with very long AL.

Special constants are needed for IOLs that change from symmetrical to asymmetrical geometry at certain power thresholds. This can lead to significant principal plane shifts and as a result to different ELP positions. **IOL** Calculation

IOL : Comparison IOL Formula

Formula	ME±SD (D)	Mean AE	Median AB	E Eyes within±0.	50 D prediction error (%)
Short axial length (n=89)					
Haigis	-0.080±0.428	0.344	0.280		75.3
Holladay 1	-0.097±0.421	0.334	0.295		77.5
SRK/T	-0.028±0.446	0.352	0.320	Holladay is suitable for	71.9
Barrett universal II	0.215±0.439	0.398	0.340	Short AL	66.3
Medium axial length (n=432)					
Haigis	-0.126±0.439	0.360	0.285		73.6
Holladay 1	0.005±0.416	0.326	0.270		78.9
SRK/T	0.057 <u>+</u> 0.446	0.350	0.280		75.7
Barrett universal II	0.184±0.392	0.337	0.278		76.6
Long axial length (n=69)	N.S.W. (1785-77899519557)		19924010101010	Barrett U ll is suitable	
Haigis	-0.093±0.458	0.365	0.340	for Long AL	68.1
Holladay 1	0.306±0.521	0.500	0.410		56.5
SRK/T	0.064±0.464	0.386	0.350		69.6
Barrett universal II	0.079±0.406	0.327	0.300		78.3
Formula	ME±SD (D)	Mean AE	Median AE	Eyes within ±0.	50 D prediction error (%)
Low power (n=84)					
Haigis	-0.020±0.394	0.318	0.288		77.4
Holladay 1	0.259±0.511	0.454	0.370	Barrett II ll is suitable	63.1
SRK/T	0.055±0.490	0.400	0.358	for Long IOL Deserve	67.9
Barrett universal II	0.126±0.372	0.308	0.280	for Low IOL Power	78.6
Medium power (n=436)					
Haigis	-0.133±0.478	0.362	0.283		73.6
Holladay 1	-0.013±0.412	0.323	0.270		78.9
SRK/T	0.025±0.437	0.342	0.280		76.6
Barrett universal II	0.164±0.391	0.332	0.278		77.3
High power (n=70)					
Haigis	-0.123±0.486	0.388	0.298	Holladay is suitable for	65.7
Holladay 1	-0.021±0.462	0.371	0.310	High IOL Power	74.3

ME, mean prediction error; SD, standard deviation of mean prediction error; AE, absolute prediction error; D, diopter

0.378

0.471

0.340

0.418

0.157±0.457

0.310±0.475

SRK/T

Barrett universal II

68.6

58.6

IOL Calculation

IOL : Comparison IOL Formula

Spherical Power Prediction True K TK											
60 Eyes:	True K TK	True K	Haigis L	Haigis TK	Shammas						
Mean Error	-0.04	-0.17	-0.45	-0.12	-0.36						
STDev	0.51	0.57	0.65	0.67	0.62						
MAE	0.41	0.47	0.67	0.56	0.59						
Med AE	0.34	0.37	0.61	0.50	0.57						
=% 0.5 D</td <td>70.0%</td> <td>63.3%</td> <td>31.7%</td> <td>50.0%</td> <td>46.7%</td>	70.0%	63.3%	31.7%	50.0%	46.7%						
=% 0.75 D</td <td>86.7%</td> <td>85.0%</td> <td>60.0%</td> <td>71.7%</td> <td>66.7%</td>	86.7%	85.0%	60.0%	71.7%	66.7%						
=%1.00 D</td <td>96.7%</td> <td>88.3%</td> <td>83.3%</td> <td>80.0%</td> <td>86.7%</td>	96.7%	88.3%	83.3%	80.0%	86.7%						

Table 5. Percentage of eyes within ± 0.50 D and ± 1.00 D from the target refraction in Groups A and B.

	Percentage										
	Group A	(n = 58)	Group B (n = 30)								
Formula/Method	Within ±0.50 D	Within ±1.00 D	Within 0.50 D	Within ±1.00 D							
Adjusted Atlas	60.3	87.9	-	—							
Masket	60.3	84.5	—								
Modified Masket	53.4	86.2	—	_							
Wang/Koch/Maloney	43.1	81.0	—	—							
Shammas	55.2	82.8	50.0	80.0							
Haigis-L	48.3	81.0	46.7	76.7							
True-K	67.2	94.8	63.3	80.0							
Average	58.6	91.4	46.7	83.3							

Group A – Pre/Post REF Data exist Group B – Nohistory Pre/Post REF Data

IOL Calculation

Field Test : Israel

1) Measured Data

Nama	Cida			HB	M-1					Lensta	ar-900		
Name A** R** P** Y** S**	Side	AL	ССТ	ACD	LT	K1	K2	AL	ССТ	ACD	LT	K1	K2
A **	R	22.36	563	2.729	4.08	46.07	46.83	22.35	550	3.22	4.04	45.81	46.57
A**	L	22.32	538	2.766	4.06	45.97	46.37	22.25	551	3.25	4.02	45.79	46.27
D**	R	23.36	518	3.12	4.26	45.15	46	23.35	527	3.55	4.23	44.93	45.75
R	L	23.32	553	3.148	4.245	45.14	45.76	23.39	533	3.57	4.25	45.33	45.87
D**	R	22.37	557	3.5	3.63	45.86	46.9	22.36	548	3.96	3.63	45.82	47.16
P**	L	22.4	561	3.56	3.58	46.11	47.24	22.35	549	4	3.64	45.97	47.38
V**	R	22.57	527	3.21	3.83	44.62	45.86	22.53	527	3.64	3.83	44.86	45.81
Y	L	22.81	523	3.27	3.83	44.82	45.75	22.71	526	3.68	3.82	44.84	45.67
C**	R	22.16	506	2.93	3.73	45.19	46.86	22.2	511	3.32	3.81	45.06	46.72
5	L	22.09	526	2.97	3.82	44.62	47	21.96	511	3.36	3.82	45.06	47.69
C**	R	24.31	546	2.85	4.28	45.44	45.58	24.39	529	3.28	4.34	45.04	45.45
G**	L	24.08	545	4.2	0.89	44.52	46.44	24.16	535	4.65	0.83	45.14	45.74

2) Lens prescription

	HBM		Holladay	Hoffer Q	Barrett			
22.0(-0.19)	22.0(-0.24)	22.0(-0.32)	0	0	0	22.0(-0.25)	22.0(-0.3)	22.0(-0.41)
21.5(-0.17)	21.5(-0.25)	21.5(-0.3)	-0.5	0	0	22.0(-0.37)	21.5(-0.1)	21.5(-0.18)
22.5(-0.08)	22.5(-0.08)	23.0(-0.16)	-0.5	-0.5	0	23.0(-0.39)	23.0(-0.39)	23.0(-0.16)
22.0(-0.36)	22.0(-0.4)	22.0(-0.09)	0	0	-0.5	22.0(-0.1)	22.0(-0.13)	22.5(-0.22)
23.5(-0.38)	23.5(-0.36)	23.0(-0.25)	0	0	0	23.5(-0.35)	23.5(-0.33)	23.0(-0.27)
24.0(-0.36)	24.0(-0.32)	23.5(-0.14)	0.5	0.5	0	23.5(-0.12)	23.5(-0.08)	23.5(-0.36)
16.5(-0.25)	16.0(-0.24)(16.5(-0.27)	0	0	0	16.5(-0.18)	16.0(-0.16)	16.5(-0.23)
17.0(-0.14)	17.0(-0.39)	17.0(-0.26)	0	0.5		17(-0.21)	16.5(-0.17)	??

Field test

O

Field Test : India

Comparison	Of Biometry Measure	es Between HBM-1 A	nd Lenst	ar-900
Parameter	HBM-1 Mean SD	Lenstar Mean SD	Diff	95% LoA
Axial Length	24.04±1.40	24.07±1.39	-0.03	`-0.08 to + 0.22
CCT	537.88±29.97	533.85±29.34	4.02	`-18.4 to +9.46
ACD	3.32±0.45	3.44±0.55	-0.12	`-0.38 to + 0.64
LT	4.32±0.45	4.13±0.47	0.18	`-0.83 to + 0.47
Flat Meridian(K1)	43.47±2.53	43.16±2.39	0.3	`-1.57 to + 0.95
Steep Meridian(K2)	44.28±2.59	44.21±2.65	0.06	`-0.95 to + 0.82
White to White	11.87±0.45	11.78±0.60	0.09	`-1.04 to + 0.87

O

Field test

Field Test : Romania

Field test

Comparison C	Of Biometry Measures	Between HBM-1 And	d PentaC	am-AXL
Parameter	HBM-1 Mean SD	PentaCam Mean SD	Diff	95% LoA
Axial Length	23.56±0.85	23.52±0.88	0.04	`-0.04 to + 0.13
ССТ	533±43.95	532±33.67	1.5	`-18.4 to +9.46
ACD	3.25±0.23	3.14±0.24	0.11	`-0.06 to + 0.15
Flat Meridian(K1)	43.93±1.27	43.58±1.21	0.35	`-0.12 to + 0.80
Steep Meridian(K2)	44.69±1.53	44.19±1.41	0.5	`-0.24 to + 1.23

Field Test : Romania

Field test

Comparison Of	Comparison Of Biometry Measures Between HBM-1 And Optopol biometer								
Parameter	HBM-1 Mean SD	Optopol Mean SD	Diff	95% LoA					
Axial Length	23.56±0.85	23.52±0.88	0.04	`-0.08 to + 0.16					
CCT	533±43.95	548±35.67	14.6	`-42.7 to +14.3					
ACD	3.25±0.23	3.16±0.24	0.09	`-0.02 to + 0.16					
LT	4.56±0.34	4.62±0.36	-0.06	`-0.18 to + 0.07					

O

Myopia

Myopia

O

Myopia

Онвм-1

MYOPIA MANAGEMENT

Myopia Management 00001

0

8)

Myopia

MYOPIA MANAGEMENT

9 Myopia Management 00001

Myopia

Myopia

0

ලා

÷

MYOPIA MANAGEMENT

B Myopia Management 9 00001

0

-2

-3

-4

-5

-6

-8

-9

-1.00D

0

61)

Myopia

О НВМ-1

MYOPIA MANAGEMENT

Myopia Management 9 00001

2)

	OD OS	Raw Data			Add		Delete	
					Add D	ata De	elete Data	
	AL	DATE	RX SE(D)	AL (mm)	ACD (mm)	LT (mm)	KER (D)	
୧	SPH	09 - 2023	-5.00	25.90	3.47	4.00	45.00	
	KER	19 - 09 - 2023		26.45	3.74	3.82	42.80	
	ORTHO-K	08 - 08 - 2023	-4.75	27.50	3.00	3.00	45.00	
	OD / OS	08 - 08 - 2022	-4.75	27.30	3.00	3.00	44.00	
	DATA	08 - 08 - 2021	-4.50					
		08 - 08 - 2020	-3.50	24.20	3.00	3.00	38.00	
		08 - 08 - 2019	-1.75	23.30	3.00	3.00	38.00	
ŝ				1/3				

Myopia

O

Myopia

O

(64)

Myopia

0

(65)

.

Myopia

Myopia

O

User Setup

User Setting (Import Contact Lens)

User Setup

1 9 · C	~ -	HBM	_ContactLens	sFitting_Database.csv	- Excel		2	검색					
파일 홈	삽입 페이지 레이아웃	수식 데이	터 검토	보기 도움밀									
🍅 🖁 잘라니	내기 맑은 고딕	~ 11	↓ 가^ 카`	= = - 🛷 -	^{2날} 자동	줄 바꿈	일반	~		표준	나쁨	보통	좋음
┗┛ [͡͡] 복사 붙여넣기	▼ [▶] 가 가 <u>가</u> ▼ [↓]	~ <u>◇</u> ~ <u>가</u>	▼ ^{내천} ▼		ਦ ਦੋ ਦੀ ਥੋਹੇ	하고 가운데 맞춤	~ 🖻 ~ %	9 ←0 .00 ³	전부 표 [계산	메모	<i>설명 텍스트</i>	셀 확인
크리비디		그꼬			마츠		с. <u>–</u> ца	ал с ⁷				스타이	
	IN	ㄹㄹ 시ㅠㄹ ㄱㅂ티 혀/		김자희며 이터 기도이	곳곱 소사되 스 이		[회원면 Event 파이 3	형사이르 대자학이		ㅠ니아하			
	월 - 있는 이용입 군시물 :	H표도 귀군된 영(읙(.csv)으도 ^	이상아인 일두 기능이	건설될 두 있	급니다. 기둥글 뀨/	시아니던 EXCel 파일	영식으로 시장아/		표시한암	나는 아름으도 시상	8	
R13 👻	$\times \sqrt{f_x}$												
	R	C	D	F	F	G	н	1		ĸ		м	Ν
1 Manufactu	rer Model	Type	Base r0	Rase Diameter	Base Ecc	Perinhery r1	Perinheny h1	Perinhery r2	Perinheny h2	Perinheny r	·3 Perinheny h3	Peripheny r4	Perinheny h4
2 Appenz	FX AS	Normal	845	9.8	06	11 95	04	0	r enpriery_bz	0	0	0 0	0
3 Appenz.	EX MK	Normal	8.45	9.8	0.6	8,93	0.96	11.95	0	.4	0	0 0) 0
4 Falco	FAF	Normal	8.45	10	0.6	12.05	0.50	0		0	0	0 0) 0
5 Falco	FAS	Normal	8.45	10	0.6	12.05	0.5	0		0	0	0 0) 0
6 Galifa	ModulaA	Normal	8.45	9.8	0.6	11.25	0.5	10.7		0	0	0 0) 0
7 Galifa	ModulaM	Normal	8.45	9.8	0.6	9,29	0.57	11.25	0	.5	0	0 0) 0
8 Hetvch	Aktiv Comf.	Normal	8.45	10	0.6	9.05	0.65	12	0	.2	0	0 0	0
9 Hetvch	Aktiv Top	Normal	8.45	10	0.6	12	0.4	12	-	0	0	0 0) 0
10 Hetvch	Bifo Aktiv	Normal	8.45	10	0.6	9.05	0.6	12	0	.2	0	0 0) 0
11 JenaLens	ABOGDT	Normal	8.5	9.8	0.45	12	0.4	12		0	0	0 0) (
12 JenaLens	ABOGVTP	Normal	8.5	9.8	0.45	12	0.4	12		0	0	0 0) 0
13 JenaLens	ABOGTpri	Normal	8.5	9.8	0.45	12	0.4	12		0	0	0 0) (
14 JenaLens	Asph	Normal	8.45	9.8	0.6	12	0.4	12		0	0	0 0) (
15 JenaLens	Asph-Kera	Normal	8.25	9.8	0.9	12	0.4	12		0	0	0 0) 0
16 JenaLens	AsphPri	Normal	8.45	9.8	0.6	12	0.4	12		0	0	0 0) 0
17 JenaLens	Asph VTP	Normal	8.45	9.8	0.6	12	0.4	12		0	0	0 0) 0
18 JenaLens	Jeclips	Normal	8.3	9.8	0.8	0	0	0		0	0	0 0) 0
19 JenaLens	Jecl. RT/BT	Normal	8.3	9.8	0.8	0	0	0		0	0	0 0) 0
20 JenaLens	Jecl. VT	Normal	8.3	9.8	0.8	0	0	0		0	0	0 0) 0
21 MPG&E	compact AS	Normal	8.45	10	0.6	0	0	0		0	0	0 0) 0
22 MPG&E	compact ASAB	Normal	8.45	10	0.6	0	0	0		0	0	0 0) 0
23 MPG&E	compact ASVPT	Normal	8.45	10	0.6	0	0	0		0	0	0 0) 0
24 MPG&E	compact CX	Normal	8.5	9.8	0.45	0	0	0		0	0	0 0) 0
25 MPG&E	compact CXVP	Normal	8.5	9.8	0.45	0	0	0		0	0	0 0) 0
26 MPG&E	compact CXV	Normal	8.5	10	0.45	0	0	0		0	0	0 0) 0
27 MPG&E	compact EZ	Normal	8.45	10	0.6	0	0	0		0	0	0 0	0
28 MPG&E	compact EZV	Normal	8.45	10	0.6	0	0	0		0	0	0 0	0
29 MPG&E	compact EZM	Normal	8.45	10	0.6	0	0	0		0	0	0 0	0
30 MPG&E	compact EZMVT	Normal	8.45	10	0.6	0	0	0		0	0	0 0	0
31 PRECI	AZ	Normal	8.6	9.8	0.3	10	0.2	10	0	.2	0	0 0	0
32 PRECI	AZTE	Normal	8.6	9.8	0.3	10	0.2	10	0	.2	0	0 0	0
33 PRFCI	BA7	Normal	8.6	9.8	0.3	10	0.2	10	0	.2	0	0 0) 0

User Setup

70)

User Setup

User Setup

O
User Setup

SETUP						
System	CCT Offset	0		CCT Std	0.015	
Patient	ACD Offset	0		ACD Std	0.05	
Measure	LT Offset	0		LT Std	0.06	
connectivity				Evaluation Red	3	ANT settings
Report				Evaluation Yellow	4	
IOL				Evaluation Green	5	
Information						
Dicom						
	Default	<	3/3		Cancel	ОК

0

	×1/			
SETUP				3
System	Auto Data Transfer	On Off	Transfer data when saving	
Patient	HIIS-1 Server IP	hoct.huvitz.com	Reset	
Measure	HIIS-1 Server Port	8080	Reset	
Connectivity				
Report				
IOL				
Infomation				
		< 1/1	> Cancel	ОК
~				

User Setup

75)

User Setup

77)

User Setup

O

User Setting (Change Directory)

User Setup

Setting Directory		
D:\Measurement Da	ita\	Factory initialization
Patient Data		Init
IOL Lens Data		Init
Contact Lens Data		Init
Dir		Close
Change Dir		

내 PC 〉 로컬 디스:	∃ (D:) > Meas	urement Data 🔹			
	1↓ 정렬 ~	≣ 보기 ~			
이름 ^		수정한 날짜	유형	크기	
1 74		2024-02-19 오후 5:	19 파일 폴더		
1 75		2024-01-15 오전 11	:48 파일 폴더		
177		2024-01-31 오후 3:	23 파일 폴더		
1 79		2024-01-31 오후 3:	23 파일 폴더		
🗟 ContactLens.db		2024-02-16 오후 3:	14 Data Base File	32KB	
📓 HBM_DB2.db		2024-02-19 오후 1:	16 Data Base File	134KB	
🧃 iolc.db		2024-01-18 오후 4:	30 Data Base File	71KB	

O

Caution ! When you change the path, database files must have in that path

User Setting (Change Directory)

User Setup

O

User Setting (Change Directory)

User Setup

ŝ	Backup_2024_01_10_07_03_11_HBM_DB2.db	2024-01-10 오후 2:42	Data Base File	134KB
\$	Backup_2024_01_10_07_03_16_HBM_DB2.db	2024-01-10 오후 2:42	Data Base File	134KB
\$	Backup_2024_01_10_07_12_46_HBM_DB2.db	2024-01-10 오후 2:42	Data Base File	134KB
\$	Backup_2024_01_10_07_13_00_HBM_DB2.db	2024-01-10 오후 2:42	Data Base File	134KB
\$	Backup_2024_01_10_07_13_33_HBM_DB2.db	2024-01-10 오후 2:42	Data Base File	134KB
ŝ	Backup_2024_01_10_07_13_44_HBM_DB2.db	2024-01-10 오후 2:42	Data Base File	134KB
ŝ	Backup_2024_01_10_07_17_22_HBM_DB2.db	2024-01-10 오후 2:42	Data Base File	134KB
\$	Backup_2024_01_11_05_26_05_HBM_DB2.db	2024-01-10 오후 2:42	Data Base File	134KB
ŝ	Backup_2024_01_10_15_18_ContactLens.db	2024-01-10 오후 3:18	Data Base File	OKB
4	Backup_2024_01_10_15_18_iolc.db	2024-01-10 오후 3:18	Data Base File	OKB
\$	Backup_2024_01_11_02_54_41_HBM_DB2.db	2024-01-11 오전 11:36	Data Base File	129KB
ŝ	Backup_2024_01_11_03_00_01_HBM_DB2.db	2024-01-11 오전 11:48	Data Base File	134KB
\$	Backup_2024_01_11_04_35_05_HBM_DB2.db	2024-01-11 오전 11:48	Data Base File	134KB
4	Backup_2024_01_11_04_59_01_HBM_DB2.db	2024-01-11 오전 11:48	Data Base File	134KB
4	Backup_2024_01_11_05_01_10_HBM_DB2.db	2024-01-11 오전 11:48	Data Base File	134KB
ŝ	Backup_2024_01_11_05_23_13_HBM_DB2.db	2024-01-11 오전 11:48	Data Base File	134KB
\$	Backup_2024_01_11_05_28_17_HBM_DB2.db	2024-01-11 오전 11:48	Data Base File	134KB
4	Backup_2024_01_11_05_28_48_HBM_DB2.db	2024-01-11 오전 11:48	Data Base File	134KB
\$	Backup_2024_01_11_05_29_41_HBM_DB2.db	2024-01-11 오전 11:48	Data Base File	134KB
4	Backup_2024_01_11_06_06_22_HBM_DB2.db	2024-01-11 오전 11:48	Data Base File	134KB
9	Backup_2024_01_11_06_06_53_HBM_DB2.db	2024-01-11 오전 11:48	Data Base File	134KB
ŝ	Backup_2024_01_11_06_20_50_HBM_DB2.db	2024-01-11 오후 3:19	Data Base File	OKB
\$	Backup_2024_01_11_06_20_51_iolc.db	2024-01-11 오후 3:19	Data Base File	OKB
\$	Backup_2024_01_11_06_20_52_ContactLens.db	2024-01-11 오후 3:19	Data Base File	OKB
\$	Backup_2024_01_11_06_25_45_iolc.db	2024-01-11 오후 3:25	Data Base File	OKB
\$	Backup_2024_02_19_08_37_04_iolc.db	2024-02-19 오후 5:37	Data Base File	OKB
\$	Backup_2024_02_19_08_37_05_ContactLens.db	2024-02-19 오후 5:37	Data Base File	OKB

When user Pressed 'Init', database will be backup

O

(C:\HBM-1\DatabaseBackup)

User Setting (Data Backup)

User Setup

O

User Setting (Data Backup)

User Setup

Backup Database	
Source Directory	
D:¥Measurement Data¥	
Space Used : 1.85GB	
Destination Directory SelectD	
C:¥HBMBACKUPTEST¥	
Total Size : 459.42GB Free Size :	
48.74%	Start
Progressing	Close

O

Help Contact Imprint Terms & Conditions Data Privacy Statement

IOL Lens Edit

Select DB :

Spherical

User Setup

Keyboard

History Log

Manufacture	Model	Manu (A)	SRK2 (A)	SRKT (A)	HofferQ (pA	Holladay (SF	Haigis (a0)	Haigis (a1)	Haigis (a2)	Barrett (LF)	Camellin Cal	Shammas (A
1stQ	Basis K	118.9	118.6	118.3	5.15	1.37	0.95	0.4	0.1	1.517	118.9	118.9
1stQ	Basis Q	118	118.3	118.1	5.01	1.25	0.274	0.458	0.116	1.412	118	118
1stQ	Basis Z	118	118.3	118.1	5.01	1.25	-0.07	0.21	0.163	1.412	118	118
1stQ	Basis Z h	118	119.2	118.9	5.46	1.7	1.32	0.4	0.1	1.831	118	118
AMO	808C	118	119.6	119.1	5.65	1.89	1.5	0.4	0.1	1.936	118	118
AMO	CeeOn 9	118.3	119.1	118.7	5.42	1.65	0.568	0.224	0.152	1.726	118.3	118.3
AMO	ClariFlex	118	118.6	118.3	5.14	1.37	0.92	0.4	0.1	1.517	118	118
AMO	PS60 AN	116.7	118.9	118.7	5.46	1.65	1.15	0.4	0.1	1.726	116.7	116.7
AMO	ReZoom	118.4	118.5	118.3	5.2	1.4	0.92	0.4	0.1	1.517	118.4	118.4
	CAAO Arr	110	110 1	117.0	10	1 1 /	0.65	0.4	0.1	1 207	110	110

Add New Lens

Import (XML) Import Export Sph. DB Sph. DB (CSV) (CSV)

Save

Close

Axial Length(AL) X6 Anterior Chamber Depth(AcD) Central Corneal Thickness(CCT) Lens Thickness(LT) X8 Z8 Anterior Chamber Depth(AcD) Lens Thickness(LT) X8 Anterior Chamber Depth(AcD) Anterior Chamber	
ICLECTOP structure Control on the second structure to white	User Setup
IOL Lens Edit	→ 토智 (LΔΞ (D) → Messurement Data → 토智 (LΔΞ (D) → Messurement Data 급석 P) (日 → 田 ● 143 2020+07-14 足管 043 用智 音符 144 2020+07-14 足管 043 用智 音符 145 2020+07-14 足管 043 用智 音符
ाmport Sele	146 2020-01-14 요한 844 파물 등다 147 2020-01-14 요한 844 파물 등다 191 2020-01-14 요한 844 파물 등다 195 2020-01-14 요한 844 파물 등다 196 2020-01-14 요한 844 파물 등다 195 2020-01-14 요한 844 파물 등다 196 2020-01-14 요한 844 파물 등다 197 2020-01-14 요한 844 파물 등다 198 2020-01-14 요한 844 파물 등다 199 2020-01-14 요한 844 파물 등다
Reference Type : IOL Con V	199 2020-03-14 2党 44 再算部1 200 2020-03-14 2党 44 再算部1 201 2020-03-14 2党 44 再算部1 201 2020-03-14 2党 644 再算部1 205 2020-03-14 2党 644 再算部1 205 2020-03-14 2党 644 再算部1 2000 File(*2mt) ・ 第71(0) 有会
1st Constraint Type : Norminal/ULIB IOL Con Optimized Load Data 	Load USB
1st 🗌 Manufactui Model Manu (A) SRK2 (A) SRKT (A) HofferQ (p. Holladay (S Haigis (a0) Haigis (a1) Haigis (a2) Barri	ett (LF) Camellin C; Shammas (
AM	
Import	Cancel
Add New Lens Delete Lens (XML) Spn. DB Spn. DB Spn. DB Save	CIOSE

lm	mport													
Re	Reference Type : IOL Con													
Co	onstraint 1	ype :	Norminal/ULIB OIOL Con Optimized						Load Data			Load USB		
	Manufactu	Model	Manu (A)	SRK2 (A)	SRKT (A)	HofferQ (p.	Holladay (S	Haigis (a0)	Haigis (a1)	Haigis (a2)	Barrett (LF)	Camellin C	Shammas (
	1stQ	611HPS	0	0	118.3	5.15	1.39	0.95	0.4	0.1	1.52	0	0	^
	1stQ	B1AB00	0	0	118.9	5.46	1.7	1.32	0.4	0.1	1.9	0	0	
	1stQ	B1ABY0	0	0	118.9	5.46	1.7	1.32	0.4	0.1	1.9	0	0	
	1stQ	B1ADYC	0	0	118.9	5.46	1.7	1.32	0.4	0.1	1.9	0	0	
	1stQ	B1AP00	0	0	118.9	5.46	1.67	1.243	0.4	0.1	0	0	0	
	1 ot O		0	0	1100	E 46	1.67	1 2/2	0.4	0.1	0	0	0	~

Import

O

Cancel

IOL Lens Edit

Select DB :

Spherical

User Setup

Keyboard

History Log

Manufacture	Model	Manu (A)	SRK2 (A)	SRKT (A)	HofferQ (pA	Holladay (SF	Haigis (a0)	Haigis (a1)	Haigis (a2)	Barrett (LF)	Camellin Cal	Shammas (A
1stQ	Basis K	118.9	118.6	118.3	5.15	1.37	0.95	0.4	0.1	1.517	118.9	118.9
1stQ	Basis Q	118	118.3	118.1	5.01	1.25	0.274	0.458	0.116	1.412	118	118
1stQ	Basis Z	118	118.3	118.1	5.01	1.25	-0.07	0.21	0.163	1.412	118	118
1stQ	Basis Z h	118	119.2	118.9	5.46	1.7	1.32	0.4	0.1	1.831	118	118
AMO	808C	118	119.6	119.1	5.65	1.89	1.5	0.4	0.1	1.936	118	118
AMO	CeeOn 9	118.3	119.1	118.7	5.42	1.65	0.568	0.224	0.152	1.726	118.3	118.3
AMO	ClariFlex	118	118.6	118.3	5.14	1.37	0.92	0.4	0.1	1.517	118	118
AMO	PS60 AN	116.7	118.9	118.7	5.46	1.65	1.15	0.4	0.1	1.726	116.7	116.7
AMO	ReZoom	118.4	118.5	118.3	5.2	1.4	0.92	0.4	0.1	1.517	118.4	118.4
	CA40 Arr	110	1101	1170	10	1 1 /	0.65	0.4	0.1	1 207	110	110

Add New Lens

Import (XML) Import Export Sph. DB Sph. DB (CSV) (CSV)

Save

Close

OL Lens Edit												Keyboard
Select DB	:	Spheric	al	~							History	Log
Manufacture	Model	Manu (A)	SRK2 (A)	SRKT (A)	HofferQ (pA	Holladay (SF	Haigis (a0)	Haigis (a1)	Haigis (a2)	Barrett (LF)	Camellin Cal	Shammas (A
1stQ	Basis K	118.9	118.6	118.3	5.15	1.37	0.95	0.4	0.1	1.517	118.9	118.9
1stQ	Basis Q	118	110.0	1101	E 01	1.05	0.074	0.450	0.110	1 / 1 2	118	118
1stQ	Basis Z	Basis Z 118 Spherical DB Import (CSV)										118
1stQ	Basis Z h	Basis Z h 118 Path : C:₩Users₩Huvitz₩Desktop₩IOL_Sph_20240226_142132.cs. Open File									118	118
AMO	808C	118				C	oata read s	uccessful.	Impo	ort	118	118
AMO	CeeOn 9	118					A	Apply	Cano	cel	118.3	118.3
AMO	ClariFlex	118	118.6	118.3	5.14	1.37	0.92	0.4	0.1	1.517	118	118
AMO	PS60 AN	116.7	118.9	118.7	5.46	1.65	1.15	0.4	0.1	1.726	116.7	116.7
AMO	ReZoom	118.4	118.5	118.3	5.2	1.4	0.92	0.4	0.1	1.517	118.4	118.4
	CA 10 Arr	110	110 1	1170	10	1 1 /	0.65	0.4	0.1	1 207	110	110 ¥

Add New Lens	Delete Lens	Import (XML)	Import Sph. DB (CSV)	Export Sph. DB (CSV)	Save	Close
--------------	-------------	-----------------	----------------------------	----------------------------	------	-------

(90)

IOL Lens Edit

Select DB :

Spherical

User Setup

Keyboard

History Log

Manufacture	Model	Manu (A)	SRK2 (A)	SRKT (A)	HofferQ (pA	Holladay (SF	Haigis (a0)	Haigis (a1)	Haigis (a2)	Barrett (LF)	Camellin Cal	Shammas (A
1stQ	Basis K	118.9	118.6	118.3	5.15	1.37	0.95	0.4	0.1	1.517	118.9	118.9
1stQ	Basis Q	118	118.3	118.1	5.01	1.25	0.274	0.458	0.116	1.412	118	118
1stQ	Basis Z	118	118.3	118.1	5.01	1.25	-0.07	0.21	0.163	1.412	118	118
1stQ	Basis Z h	118	119.2	118.9	5.46	1.7	1.32	0.4	0.1	1.831	118	118
AMO	808C	118	119.6	119.1	5.65	1.89	1.5	0.4	0.1	1.936	118	118
AMO	CeeOn 9	118.3	119.1	118.7	5.42	1.65	0.568	0.224	0.152	1.726	118.3	118.3
AMO	ClariFlex	118	118.6	118.3	5.14	1.37	0.92	0.4	0.1	1.517	118	118
AMO	PS60 AN	116.7	118.9	118.7	5.46	1.65	1.15	0.4	0.1	1.726	116.7	116.7
AMO	ReZoom	118.4	118.5	118.3	5.2	1.4	0.92	0.4	0.1	1.517	118.4	118.4
	CAAO Arr	110	110 1	1170	10	1 1 /	0.65	0.4	0.1	1 207	110	110

Add New Lens

Delete Lens

Import (XML) Import Export Sph. DB Sph. DB (CSV) (CSV)

Save

Close

IOL Lens Edit Keyboard Select DB : Spherical History Log Manufacture Model Manu (A) SRK2 (A) SRKT (A) HofferQ (pA Holladay (SF Haigis (a0) Haigis (a1) Haigis (a2) Barrett (LF) Camellin Cal Shammas (A 118.9 118.6 118.3 5.15 0.95 0.4 0.1 1.517 118.9 118.9 1stQ Basis K 1.37 E 01 110 2 1101 1 25 0 274 0110 1 112 Basis Q 118 0 400 1stQ 118 118 Spherical DB Export (CSV) 118 1stQ Basis Z 118 118 Open Folder ./IOL_Sph_20240226_142756.csv Path : Basis Z h 118 118 1stQ 118 808C Data export successful. Export 118 118 118 AMO 118.3 AMO CeeOn 9 118.3 118 Close ClariFlex AMO 118 118.6 118.3 5.14 1.37 0.92 0.1 1.517 0.4 118 118 118.7 5.46 0.1 116.7 116.7 AMO PS60 AN 116.7 118.9 1.65 1.15 0.4 1.726 5.2 AMO ReZoom 118.4 118.5 118.3 1.4 0.92 0.4 0.1 118.4 118.4 1.517 1110 CA10 Arr 110 1101 1170 10 1 1 1 OGE 01 01 1 207 110 110

Import Export Import Close Sph. DB Save Add New Lens Delete Lens Sph. DB (XML) (CSV) (CSV)

Exported CSV file

	1) - (1				FIGIEI						I	OL_Sph_202404	405_164802.0	csv - Micro	osoft Excel												_	- 0	×
파일	음 🔏 잘	잡입 페 ^{라내기} 맑은 :	이시 레이야웃 고딕	주식 	네이터 - 가 가	검도 모기	No.	클, 텍스트 중 바		일반	•		표준	L	·쁨	보통		좋음		경고문	*		×		Σ 자동 합계	· 才 🔏	2	≏ 😗 🗆	
<mark>-</mark>	기 🗈 복/	\/ ···		- <u>A</u> - 71	내천				이데마ᄎ		≁ .0 .00	조건부 표	계산		·	실명 5	렌ㅅㅌ	셐 화이		으 여격되 섹	-	산인 성	브 탄	신	費 채우기 ▼	O [□] U 정력 및 찬	기민		
- E-19	' ∛ 서∛	식복사 가 /	· <u>.</u> · · · ·	r <u>99</u> * <u>21</u>	Ť ÎN Ť			9월 영압아고 가· ~	운데 빚쑴 ▼		.000	서식 * 서식 *						290		<u>ueu e</u>		*	*		② 지우기 ▼	필터 ▼ 선	म × म ×		
1	립보드	Ta .	di d		5		맞렴	5	Ea.	표시 영	식 5					스타일							셀			면십			
	A1	•	(<i>f</i> ₃	Manufa	acturer																								¥
	A	B	C	D	E	F	G	H		J	K	L	M	N	0	Р	Q	R	2	S	T	U		V	W	Х	Y	Z	- <u>-</u>
1 N	lanufac	ti Model	Manu_A S	RKILA S	SRK_1_A	HofferQ_pH	lolladay_	Haigis_a0 H	Haigis_a1	Haigis_a2	Barrett_LF	Camellin_(Si	hammas_A																
2 1	stQ =+0	Basis K	118.9	118.0	118.3	5.15	1.37	0.95	0.4	0.1	1.517	118.9	118.9																
3 1	siQ ctO	Basis Q Pacie Z	118	110.3	110.1	5.01	1.23	0.274	0.458	0.110	1.412	110	118																=
5 1	siQ ctO	Basis Z by	110	110.5	110.1	5.01	1.23	122	0.21	0.105	1.412	110	110																
6 4	MO	808C	118	119.2	110.5	5.65	1.0	1.52	0.4	0.1	1.031	118	118																
7 A	MO	CeeOn 91	118 3	119.0	118.7	5.03	1.05	0.568	0.4	0.152	1,530	118.3	118.3																
8 A	MO	ClariFlex	118	118.6	118.3	5.14	1.37	0.92	0.4	0.1	1.517	118	118																
9 A	MO	PS60 ANB	116.7	118.9	118.7	5.46	1.65	1.15	0.4	0.1	1.726	116.7	116.7																
10 A	MO	ReZoom N	118.4	118.5	118.3	5.2	1.4	0.92	0.4	0.1	1.517	118.4	118.4																
11 A	MO	SA40 Array	118	118.1	117.9	4.9	1.14	0.65	0.4	0.1	1.307	118	118																
12 A	MO	Sensar 1-p	118.4	119.3	119	5.57	1.79	-1.004	0.182	0.232	1.87	118.4	118.4																
13 A	MO	Sensar AR	118.4	118.9	118.7	5.39	1.62	0.472	0.077	0.174	1.726	118.4	118.4																
14 A	MO	Sensar AR	118.4	118.8	118.7	5.41	1.63	-2.42	0.157	0.288	1.726	118.4	118.4																
15 A	MO	SI30 NB	117.4	118.6	118.5	5.34	1.58	1.23	0.4	0.1	1.622	117.4	117.4																
16 A	MO	SI40 NB	118	118.6	118.4	5.19	1.42	-0.199	0.276	0.169	1.569	118	118																
17 A	MO	SI55	118	119.1	118.7	5.28	1.56	5 1.1	0.4	0.1	1.726	118	118																
18 A	MO	Tecnis 1 Z	118.8	119.6	119.3	5.8	2.02	-1.302	0.21	0.251	2.041	118.8	118.8																
19 A	MO	Tecnis Z90	119	119.5	119.2	5.71	1.93	-0.663	0.117	0.232	1.988	119	119																
20 A	MO	Techis Z90	119	119.4	119.2	5./1	1.94	1.5	0.4	0.1	1.988	119	119																
21 A	MO	Techis Z90	118.7	119	118.8	5.46	1.6/	-1.201	0.102	0.246	1.//9	118.7	118.7																
22 A	MO	Techis ZAS	119.1	120.5	110.0	5.01	1.84	-1.298	0.233	0.24	1.930	110	119.1																
25 A	MO	Techis ZM	1101	120.3	119.0	5.09	2.21	-175	0.4	0.1	2.505	110.1	110 1																
24 A	MO	Tecnis ZM	118.8	119.7	119.5	5.88	2.00	1.68	0.242	0.200	2.140	118.8	118.8																
26 A	MO	Tecnis ZM	118.8	119.7	119.7	6.14	2.35	1.93	0.4	0.1	2.25	118.8	118.8																
27 A	MO	Verisyse 5	116.8	116.8	116.9	4.34	0.54	-0.25	0.4	0.1	0.784	116.8	116.8																
28 A	MO	ZFR00V Sy	119.3	0	119.211	5.629	1.882	1.456	0.4	0.1	0	0	0																
29 A	RGONO	OFEUROMA)	118	118.5	118.2	5.09	1.33	0.87	0.4	0.1	1.465	118	118																
30 A	RGONO	OFTRICE	118	118.7	118.5	5.28	1.49	1.13	0.4	0.1	1.622	118	118																
31 A	UROLA	B FH5600AS	118	117.9	117.8	4.92	1.12	0.68	0.4	0.1	1.255	118	118																
32 A	aren	Scientific /	118.5	119.2	118.8	5.54	1.74	1.36	0.4	0.1	1.779	118.5	118.5																
33 A	aren	Scientific I	118.3	119.1	118.7	5.37	1.63	1.22	0.4	0.1	1.726	118.3	118.3																
34 A	aren	Scientific I	117.8	118.8	118.7	5.4	1.61	1.2	0.4	0.1	1.726	117.8	117.8																
35 A	aren	Scientific I	118.2	119.4	119.1	5.69	1.89	1.45	0.4	0.1	1.936	118.2	118.2																
36 A	aren	Scientific (118.1	118.2	118	4.97	1.2	0.75	0.4	0.1	1.36	118.1	118.1																
_37 A	Icon M IOL	<pre>_IAcrvSof M _Sph_202404</pre>	118.4 405_164802	118.8	118.7	5.46	1.64	1.34	0.4	0.1	1.726	118.4	118.4																▼
준비																										10	0% 🗩		
																												10	021

O

User Setup

(93)

IOL Lens Edit					Keyboard
Select DB :	ōric ~				History Log
Manufacturer	Model	Lens Factor		Sphere Power Range	
Alcon AMO	Tecnis ZCTx	Manu A	118.800	Min	5
Oculentis HumanOptics		SRK/T A	119.300	Max	34
		HofferQ pACD	5.800	Step	0.5
		Holladay SF	2.020	Cylinder Power Range	
		Haigis A0	-1.302	Lens	Toricity
		Haigis A1	0.210	Tecnis ZCT100 Tecnis ZCT150	1 ^
		Haigis A2	0.251	Tecnis ZCT225	2.25
		Barrett LF	2.041	Tecnis ZCT300	3.75
Add New Toric Lens	Edit Toric Lens	Delete Toric Lens			Close

(94)

Edit Toric Lens				Keyboard						
Manufacuturer and	Model			Lens Factor						
Manufacturer Alcon				Manu A						
Model/Series AlconTest										
Cylinder Range	SubModel Lis	t	~							
	SubModel Lis	t		Exist Submodel 8	k UnConstant Toricit	y Step				
Sphere Power Range				Not exist Submodel & Constant Toricity step						
Min 10	Max 40	Step	0.5		0.0					
				Holladay SF	0.0					
SubModel List				Haigis A0	0.0					
Lens		Toricity		Haigis A1	0.0					
				5						
				Haigis A2	0.0					
				Barrett LF	0.0					
Add De	elete			Save	Cancel					

0

Edit Toric Lens			Keyboard		
Manufacuturer and Model		Lens Factor			
Manufacturer Alcon		Manu A	0.0		
Model/Series AlconTest					
Cylinder Range SubModel List	~				
		SRK/T A	0.0		
Sphere Power Range Min 10 Max 40	Step 0.5	HofferQ pACD	0.0		
	·	Holladay SF	0.0		
SubModel List		Haigis A0	0.0		
Lens	Toricity				
AlConSubmodelTest1	0.5	Haigis A1	0.0		
AlConSubmodelTest2	1.5				
AlConSubmodelTest4	3	Haigis A2	0.0		
AlConSubmodelTest5	3.5				
		Barrett LF	0.0		
Add Delate					
Add Delete		Save	Cancel		

User Setup

0

Edit Toric Lens			Keyboard
Manufacuturer and Model		Lens Factor	[
Manufacturer Alcon		Manu A	0.0
Model/Series AlconTest			
Cylinder Range	~		
Cabara Dawar Danas		SRK/T A	0.0
Min 10 Max 40 St	ep 0.5	HofferQ pACD	0.0
		Holladay SF	0.0
Cylinder Power Range		Haigis A0	0.0
Min 0.5 Max 4 St	ep 0.5	Haigis A1	0.0
		Haigis A2	0.0
		Barrett LF	0.0
		Save	Cancel

User Setup

0

Axial Length(AL

Q & A

al Lencen(AL)

Q&A

×6

¢B.

Antellior Chamber Deptin/Achi Control Comeal Thioir essicion Lens Thiokress(LT)

Kontonisty Toposistw Kestokonus Zemee Coefform Purkonwity White to white HIGHTE

0

1

144

1.